A novel deep-learning-based pressure distribution prediction approach of airfoils

Author:

Zhang Hao1ORCID

Affiliation:

1. Department of Aeronautics and Astronautics, Fudan University, Shanghai, PR China

Abstract

Pressure distribution is a crucial flow characteristic and a key consideration in supercritical airfoil design. Traditionally, obtaining the pressure distribution involves time-consuming and computationally expensive wind tunnel experiments and computational fluid dynamics calculations. This study proposes a deep-learning-based approach to directly map input geometric information to the pressure distribution output, thereby avoiding costly wind tunnel experiments and iterative computational fluid dynamics simulations based on Navier–Stokes equations to address these challenges. Conventional surrogate models typically focus on predicting simple force factors, such as lift and drag coefficients, or require the conversion of airfoil data into images for model training. The novel approach utilizes a Variational Autoencoder for pressure distribution characteristic extraction and reconstruction from feature variables. Unlike conventional models, this approach avoids image conversion and employs a radial basis function neural network for effective mapping. The model exhibits good fitting and generalization capabilities on both training and test datasets, offering a promising solution for rapid pressure distribution prediction in airfoil design. This novel deep-learning-based approach advances airfoil design methodologies, offering significant advantages in computational efficiency and performance prediction. By directly mapping geometric information to pressure distribution, it provides an innovative and promising tool for airfoil design optimization.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3