Techno-Economic Analysis of Pressurized Oxy-Fuel Combustion of Petroleum Coke

Author:

Hamadeh Hachem,Toor Sannan Y.,Douglas Peter L.,Sarathy S. Mani,Dibble Robert W.,Croiset EricORCID

Abstract

Petroleum coke (petcoke) is a by-product of heavy petroleum refining, with heating values comparable to that of coal. It is readily available in oil-producing countries such as the United States of America (USA) and the Kingdom of Saudi Arabia (KSA) at minimum costs and can be used as an inexpensive fossil fuel for power generation. Oxy-petcoke combustion is an attractive CO2 capture option as it avoids the use of additional absorption units and chemicals, and results in a CO2 + H2O flue gas stream that is compressed and dehydrated in a CO2 capture and purification unit (CO2CPU). The additional cost of the CO2CPU can be reduced through high pressure combustion. Hence, this paper reports a techno-economic analysis of an oxy-petcoke plant with CO2 capture simulated at pressures between 1 and 15 bars in Aspen PlusTM based on USA and KSA scenarios. Operating at high pressures leads to reduced equipment sizes and numbers of units, specifically compressors in CO2CPU, resulting in increased efficiencies and decreased costs. An optimum pressure of ~10 bars was found to maximize the plant efficiency (~29.7%) and minimize the levelized cost of electricity (LCOE), cost of CO2 avoided and cost of CO2 captured for both the USA and KSA scenarios. The LCOE was found to be moderately sensitive to changes in the capital cost (~0.7% per %) and increases in cost of petcoke (~0.5% per USD/tonne) and insensitive to the costs of labour, utilities and waste treatment.

Funder

King Abdullah University of Science and Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference33 articles.

1. Petroleum Coke: The coal hiding in the Tar Sands;Stockman;Oil Chang. Int.,2013

2. The Engineering ToolBox(2003) Fuels—Higher and Lower Calorific Valueshttps://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html

3. IPCC Special Report on Carbon Dioxide Capture and Storage,2005

4. Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling

5. Oxyfuel Combustion as CO2 Capture Technology Advancing for Practical use - callide Oxyfuel Project -

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3