Large Eddy Simulation and Thermodynamic Design of the Organic Rankine Cycle Based on Butane Working Fluid and the High-Boiling-Point Phenyl Naphthalene Liquid Heating System

Author:

Davidy AlonORCID

Abstract

Large Eddy Simulation (LES) and Thermodynamic study have been performed on Organic Rankine Cycle (ORC) components (boiler, evaporator, turbine, pump, and condenser). The petroleum Coke burner provided the heat flux needed for the butane evaporator. High boiling point fluid (called phenyl-naphthalene) has been applied in the ORC. The high boiling liquid is safer (steam explosion hazard may be prevented) for heating the butane stream. It has best exergy efficiency. It is non-corrosive, highly stable, and flammable. Fire Dynamics Simulator software (FDS) has been applied in order to simulate the pet-coke combustion and calculate the Heat Release Rate (HRR). The maximal temperature of the 2-Phenylnaphthalene flowing in the boiler is much less than its boiling temperature (600 K). Enthalpy, entropy and specific volume required for evaluating the heat rates and the power have been computed by employing the THERMOPTIM thermodynamic code. The proposed design ORC is safer. This is because the flammable butane is separated from the flame produced in the petroleum coke burner. The proposed ORC obeys the two fundamental laws of thermodynamics. The calculated net power is 3260 kW. It is in good agreement with net power is reported in the literature. The thermal efficiency of the ORC is 18.0%.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference31 articles.

1. Exergy, Organic Rankine Cycle Technology Can Drive Efficiency Improvements across the Energy Industry https://www.nsenergybusiness.com/news/exergy-organic-rankine-cycle/

2. Structural Optimization and Experimental Investigation of the Organic Rankine Cycle for Solar Thermal Power Generation;Li;Ph.D. Thesis,2015

3. Techno-Economic Analysis of Pressurized Oxy-Fuel Combustion of Petroleum Coke

4. Early Entrance Coproduction Plant - the Pathway to the Commercial CTL (Coal-to-Liquids) Fuels Production

5. Comparative Thermodynamic Analysis of the Performance of an Organic Rankine Cycle Using Different Working Fluids

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3