Abstract
This paper presents an environmental sustainability assessment of residential user-scale energy systems, named solar home systems, encompassing their construction, operation, and end of life. The methodology adopted is composed of three steps, namely a design phase, a simulation of the solar home systems’ performance and a life cycle assessment. The analysis aims to point out the main advantages, features, and challenges of lithium-ion batteries, considered as a benchmark, compared with other innovative devices. As the environmental sustainability of these systems is affected by the solar radiation intensity during the year, a sensitivity analysis is performed varying the latitude of the installation site in Europe. For each site, both isolated and grid-connected solar home systems have been compared considering also the national electricity mix. A general overview of the results shows that, regardless of the installation site, solid state nickel cobalt manganese and nickel cobalt aluminium lithium-ion batteries are the most suitable choices in terms of sustainability. Remarkably, other novel devices, like sodium-ion batteries, are already competitive with them and have great potential. With these batteries, the solar home systems’ eco-profile is generally advantageous compared to the energy mix, especially in on-grid configurations, with some exceptions.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献