A Review of Sodium-Metal Chloride Batteries: Materials and Cell Design

Author:

Leonardi Salvatore Gianluca1ORCID,Samperi Mario1ORCID,Frusteri Leone1ORCID,Antonucci Vincenzo1,D’Urso Claudia1

Affiliation:

1. National Research Council (CNR), Institute for Advanced Energy Technologies “Nicola Giordano” (ITAE), Via S. Lucia sopra Contesse, 5, 98126 Messina, Italy

Abstract

The widespread electrification of various sectors is triggering a strong demand for new energy storage systems with low environmental impact and using abundant raw materials. Batteries employing elemental sodium could offer significant advantages, as the use of a naturally abundant element such as sodium is strategic to satisfy the increasing demand. Currently, lithium-ion batteries represent the most popular energy storage technology, owing to their tunable performance for various applications. However, where large energy storage systems are required, the use of expensive lithium-ion batteries could result disadvantageous. On the other hand, high-temperature sodium batteries represent a promising technology due to their theoretical high specific energies, high energy efficiency, long life and safety. Therefore, driven by the current market demand and the awareness of the potential that still needs to be exploited, research interest in high-temperature sodium batteries has regained great attention. This review aims to highlight the most recent developments on this topic, focusing on actual and prospective active materials used in sodium-metal chloride batteries. In particular, alternative formulations to conventional nickel cathodes and advanced ceramic electrolytes are discussed, referring to the current research challenges centered on cost reduction, lowering of the operating temperature and performance improvement. Moreover, a comprehensive overview on commercial tubular cell design and prototypal planar design is presented, highlighting advantages and limitations based on the analysis of research papers, patents and technical documents.

Funder

Italian Ministry of Economic Development

Accumulo elettrochimico

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3