Optimization and Potentials of Kraft Lignin Hydrolysates Obtained by Subcritical Water at Moderate Temperatures

Author:

Švarc-Gajić JaroslavaORCID,Brezo-Borjan Tanja,Gosselink Richard J. A.ORCID,Slaghek Ted M.ORCID,Šojić-Merkulov DanielaORCID,Ivetić TamaraORCID,Bognár SzabolcsORCID,Stojanović ZoricaORCID

Abstract

Kraft lignin was treated with subcritical water at moderate temperatures (120–220 °C) in different gas atmospheres, with the goal of optimizing its depolymerization under mild conditions. Lignin depolymerization was observed and compared using different homogeneous and heterogeneous catalysts in both nitrogen and carbon dioxide atmospheres. The most important treatment parameters for maximum lignin depolymerization and the highest yields of phenolic and other aromatic monomers were optimized. The influence of the process temperature, pressure, and time in both gas atmospheres was defined and optimized for maximum liberation of monomers into the aqueous phase. The yields of total phenols and other aromatics in the nitrogen atmosphere were the highest at 150 °C, whereas treatment in the carbon dioxide atmosphere required higher temperatures (200 °C) for a comparable efficiency. The effects of phenol addition as a capping agent in lignin depolymerization were observed and defined for both gas atmospheres. Phenol addition caused a remarkable increase in the total phenols content in the aqueous phase; however, it did not significantly affect the contents of other aromatics. The antioxidant properties of lignin hydrolysates obtained at different temperatures in different gas atmospheres were compared, correlated with the total phenols contents, and discussed, showing the promising potential of lignin hydrolysates obtained under mild subcritical water conditions.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3