Nonstationary Process Monitoring Based on Alternating Conditional Expectation and Cointegration Analysis

Author:

Rao Jingzhi,Ji ChengORCID,Wen Jiatao,Wang Jingde,Sun WeiORCID

Abstract

Traditional multivariate statistical methods, which are often used to monitor stationary processes, are not applicable to nonstationary processes. Cointegration analysis (CA) is considered an effective method to deal with nonstationary variables. If there is a cointegration relationship among the nonstationary series in the system, it indicates that a stable long-term dynamic equilibrium relationship exists among these variables. However, due to the complexity of modern industrial processes, there are nonlinear relations between variables, which are not considered by the traditional linear cointegration theory. Alternating conditional expectation (ACE) can perform nonlinear transformation on these variables to maximize the linear correlation of the transformed variables. It will be helpful to deal with the nonlinear relations by modeling with transformed variables. In this work, a new monitoring strategy based on ACE and CA is proposed. The data are first transformed by an ACE algorithm, CA is performed after that, and then monitoring statistics are calculated to determine whether the system is faulty. The strategy is applied to the monitoring of a simulation case and a catalytic reforming unit in a petrochemical company. The results show that the strategy can realize the monitoring of nonstationary process, with a higher fault detection rate and a lower false alarm rate compared with the monitoring strategy based on traditional cointegration theory.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference26 articles.

1. Review of Recent Research on Data-Based Process Monitoring

2. A Review on Data-Driven Process Monitoring Methods: Characterization and Mining of Industrial Data

3. Monitoring Wine Fermentation Deviations Using An ATR-MIR Spectrometer and MSPC Charts;Julieta;Chemom. Intell. Lab. Syst.,2020

4. Mutual Information Based PCA Algorithm with Application in Process Monitoring;Tong;CIESC J.,2015

5. Multi-Rate Process Fault Detection Based on Partial Least Squares;Li;Comput. Simul.,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3