Abstract
This study proposes a recognition method based on symmetrized dot pattern (SDP) analysis and convolutional neural network (CNN) for rapid and accurate diagnosis of insulation defect problems by detecting the partial discharge (PD) signals of XLPE power cables. First, a normal and three power cable models with different insulation defects are built. The PD signals resulting from power cable insulation defects are measured. The frequency and amplitude variations of PD signals from different defects are reflected by comprehensible images using the proposed SDP analysis method. The features of different power cable defects are presented. Finally, the feature image is trained and identified by CNN to achieve a power cable insulation fault diagnosis system. The experimental results show that the proposed method could accurately diagnose the fault types of power cable insulation defects with a recognition accuracy of 98%. The proposed method is characterized by a short detection time and high diagnostic accuracy. It can effectively detect the power cable PD to identify the fault type of the insulation defect.
Funder
Ministry of Science and Technology of Taiwan
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献