Nickel Binding Affinity with Size-Fractioned Sediment Dissolved and Particulate Organic Matter and Correlation with Optical Indicators

Author:

Cheng-Wen Chuang,Liang-Fong Hsu,Hsiang-Chun Tsai,Yung-Yu Liu,Wei-Shiang Huang,Ting-Chien Chen

Abstract

In rivers, the distribution and reactivity of heavy metals (HMs) are affected by their binding affinity with sediment dissolved organic matter (DOM) and particulate organic matter (POM). The HM-OM binding affinity affected by the interaction between DOM and POM is not well studied. This study investigated the Ni binding affinity to size-fractioned overlaying water DOM and alkaline extracted sediment POM solution (AEOM). The DOM/AEOM filtrates (<0.45 μm) were sequentially separated into five nominal molecular weight (MW) solutions. The AEOM optical indicators had lower autochthonous, higher terrestrial sources, and lower aromaticity than the DOM. The Ni mass (72.3 ± 6.4%) was primarily distributed in the low molecular weight DOM (<1 kDa), whereas the Ni (93.5 ± 0.4%) and organic carbon (OC) mass (85.3 ± 1.0%) were predominantly distributed in the high molecular weight AEOM. The Ni and DOM binding affinity, ([Ni]/[DOC])DOM ratio ranging from 0.76 to 27.32 μmol/g-C, was significantly higher than the ([Ni]/[DOC])AEOM ratios, which ranged from 0.64 to 2.64 μmol/g-C. The ([Ni]/[DOC])AEOM ratio correlated significantly with the selected optical indicators (r = 0.87–0.92, p < 0.001), but the ([Ni]/[DOC])DOM ratio correlated weakly with the optical indicators (r = 0.13–0.40, p > 0.05). In the present study, the Ni binding affinity with size-fractioned DOM/AEOM agrees with the hypothesis of the DOM and POM exchange conceptual model in sediment. The POM underwent a hydrolysis/oxidation process; hence, AEOM had a high molecular weight and stable chemical composition and structure. The Ni mainly attached to the high molecular weight AEOM and the ([Ni]/[DOC])AEOM ratios had a strong correlation with the AEOM optical indicators. In contrast, DOM had a high ([Ni]/[DOC])DOM ratio in low molecular weight DOM.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3