Investigation of the Distribution and Binding Affinity of Copper to Size-Fractioned Dissolved Organic Matter (DOM) in a Constructed Wetland

Author:

Hung Ming-Yuan1,Huang Wei-Hsiang12,Hsu Liang-Fong13,Hsieh Chi-Ying1,Chen Ting-Chien12

Affiliation:

1. Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan

2. Disaster Prevention and Mitigation Technology Research Center, General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan

3. Department of Applied English, Tainan University of Technology, Tainan 71002, Taiwan

Abstract

This study investigated the distribution and binding affinity of dissolved copper (Cu) and organic carbon (OC) in size-fractioned dissolved organic matter (DOM) in a constructed wetland (CW). Two sites were studied: one at the inflow (P-1) and one within the wetland (P-2). The DOMs (<0.45 μm) were separated into six size fractions using a cross-flow ultrafiltration system. In the wetland (P-2), the concentrations of dissolved organic carbon (DOC) increased while the concentrations of Cu decreased. The high molecular weight fraction (1 kDa–0.45 μm, HMW) contained most of the OC mass (57.4–71.2% averages). On the other hand, Cu was almost equally distributed in HMW and low molecular weight fractions (<1 kDa, LMW) with mean HMW percentages of 50.3–51.3%. The mean Cu binding affinity to DOM ratios (CuBADOM) was 74.9 ± 24.0 μmol/g-C at site P-1 and 17.3 ± 2.6 μmol/g-C at site P-2. The CuBADOM ratios were decreased in wetlands of bulk and size-fractioned DOM (p < 0.001 to p = 0.073). The SUVA254 values for bulk DOM solution were 2.54 ± 0.15 and 1.68 ± 0.18 L/mg-C/m, and humidification index (HIX) values were 1.74 ± 0.16 and 2.09 ± 0.19 for sites P-1 and P-2, respectively. Optical indicators suggested that the wetland process decreased aromaticity but increased the humification degree of DOM. Furthermore, the CuBADOM ratios positively correlated with SUVA254 and HIX within the constructed wetland DOM but not in the influent DOM. Understanding the Cu distribution and binding affinity to size-fractioned DOM makes it possible to develop strategies to mitigate the potential effects of copper pollution in wetlands.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3