Coastal Bathymetry Estimation from Sentinel-2 Satellite Imagery: Comparing Deep Learning and Physics-Based Approaches

Author:

Najar Mahmoud AlORCID,Benshila RachidORCID,Bennioui Youssra El,Thoumyre GrégoireORCID,Almar RafaelORCID,Bergsma Erwin W. J.ORCID,Delvit Jean-Marc,Wilson Dennis G.

Abstract

The ability to monitor the evolution of the coastal zone over time is an important factor in coastal knowledge, development, planning, risk mitigation, and overall coastal zone management. While traditional bathymetry surveys using echo-sounding techniques are expensive and time consuming, remote sensing tools have recently emerged as reliable and inexpensive data sources that can be used to estimate bathymetry using depth inversion models. Deep learning is a growing field of artificial intelligence that allows for the automatic construction of models from data and has been successfully used for various Earth observation and model inversion applications. In this work, we make use of publicly available Sentinel-2 satellite imagery and multiple bathymetry surveys to train a deep learning-based bathymetry estimation model. We explore for the first time two complementary approaches, based on color information but also wave kinematics, as inputs to the deep learning model. This offers the possibility to derive bathymetry not only in clear waters as previously done with deep learning models but also at common turbid coastal zones. We show competitive results with a state-of-the-art physical inversion method for satellite-derived bathymetry, Satellite to Shores (S2Shores), demonstrating a promising direction for worldwide applicability of deep learning models to inverse bathymetry from satellite imagery and a novel use of deep learning models in Earth observation.

Funder

Région Occitanie

Centre National d'Études Spatiales

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3