Enhancing Coastal Risk Recognition: Assessing UAVs for Monitoring Accuracy and Implementation in a Digital Twin Framework

Author:

Yuan Rui1,Zhang Hezhenjia1ORCID,Xu Ruiyang1,Zhang Liyuan1

Affiliation:

1. School of Ocean Science and Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai 201306, China

Abstract

This paper addresses the intricate challenges of coastal management, particularly in rapidly forming tidal flats, emphasizing the need for innovative monitoring strategies. The dynamic coastal topography, exemplified by a newly formed tidal flat in Shanghai, underscores the urgency of advancements in coastal risk recognition. By utilizing a digital twin framework integrated with state-of-the-art unmanned aerial vehicles (UAVs), we systematically evaluate three configurations and identify the optimal setup incorporating real-time kinematics (RTK) and light detection and ranging (LiDAR). This UAV configuration excels in efficiently mapping the 3D coastal terrain. It has an error of less than 0.1 m when mapping mudflats at an altitude of 100 m. The integration of UAV data with a precise numerical ocean model forms the foundation of our dynamic risk assessment framework. The results showcase the transformative potential of the digital twin framework, providing unparalleled accuracy and efficiency in coastal risk recognition. Visualization through Unity Engine or Unreal Engine enhances accessibility, fostering community engagement and awareness. By predicting and simulating potential risks in real-time, this study offers a forward-thinking strategy for mitigating coastal dangers. This research not only contributes a comprehensive strategy for coastal risk management but also sets a precedent for the integration of cutting-edge technologies in safeguarding coastal ecosystems. The findings are significant in paving the way for a more resilient and sustainable approach to coastal management, addressing the evolving environmental pressures on our coastlines.

Funder

National Natural Science Foundation of China

Shanghai Municipal Oceanic Bureau

Science and Technology Commission of Shanghai Municipality

Shanghai Frontiers Science Center

Shanghai Municipal Commission of Education

Publisher

MDPI AG

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3