A Detection Method for Collapsed Buildings Combining Post-Earthquake High-Resolution Optical and Synthetic Aperture Radar Images

Author:

Wang ChaoORCID,Zhang YanORCID,Xie Tao,Guo Lin,Chen Shishi,Li Junyong,Shi Fan

Abstract

The detection of collapsed buildings based on post-earthquake remote sensing images is conducive to eliminating the dependence on pre-earthquake data, which is of great significance to carry out emergency response in time. The difficulties in obtaining or lack of elevation information, as strong evidence to determine whether buildings collapse or not, is the main challenge in the practical application of this method. On the one hand, the introduction of double bounce features in synthetic aperture radar (SAR) images are helpful to judge whether buildings collapse or not. On the other hand, because SAR images are limited by imaging mechanisms, it is necessary to introduce spatial details in optical images as supplements in the detection of collapsed buildings. Therefore, a detection method for collapsed buildings combining post-earthquake high-resolution optical and SAR images was proposed by mining complementary information between traditional visual features and double bounce features from multi-source data. In this method, a strategy of optical and SAR object set extraction based on an inscribed center (OpticalandSAR-ObjectsExtraction) was first put forward to extract a unified optical-SAR object set. Based on this, a quantitative representation of collapse semantic knowledge in double bounce (DoubleBounceCollapseSemantic) was designed to bridge a semantic gap between double bounce and collapse features of buildings. Ultimately, the final detection results were obtained based on the improved active learning support vector machines (SVMs). The multi-group experimental results of post-earthquake multi-source images show that the overall accuracy (OA) and the detection accuracy for collapsed buildings (Pcb) of the proposed method can reach more than 82.39% and 75.47%. Therefore, the proposed method is significantly superior to many advanced methods for comparison.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3