Building Change Detection Based on a Gray-Level Co-Occurrence Matrix and Artificial Neural Networks

Author:

Christaki Marianna,Vasilakos ChristosORCID,Papadopoulou Ermioni-EiriniORCID,Tataris GeorgiosORCID,Siarkos Ilias,Soulakellis Nikolaos

Abstract

The recovery phase following an earthquake event is essential for urban areas with a significant number of damaged buildings. A lot of changes can take place in such a landscape within the buildings’ footprints, such as total or partial collapses, debris removal and reconstruction. Remote sensing data and methodologies can considerably contribute to site monitoring. The main objective of this paper is the change detection of the building stock in the settlement of Vrissa on Lesvos Island during the recovery phase after the catastrophic earthquake of 12 June 2017, through the analysis and processing of UAV (unmanned aerial vehicle) images and the application of Artificial Neural Networks (ANNs). More specifically, change detection of the settlement’s building stock by applying an ANN on Gray-Level Co-occurrence Matrix (GLCM) texture features of orthophotomaps acquired by UAVs was performed. For the training of the ANN, a number of GLCM texture features were defined as the independent variable, while the existence or not of structural changes in the buildings were defined as the dependent variable, assigning, respectively, the values 1 or 0 (binary classification). The ANN was trained based on the Levenberg–Marquardt algorithm, and its ability to detect changes was evaluated on the basis of the buildings’ condition, as derived from the binary classification. In conclusion, the GLCM texture feature changes in conjunction with the ANN can provide satisfactory results in predicting the structural changes of buildings with an accuracy of almost 92%.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3