Building change detection after earthquake using multi-criteria decision analysis based on extracted information from high spatial resolution satellite images

Author:

Janalipour Milad1,Taleai Mohammad1

Affiliation:

1. Faculty of Geodesy & Geomatics Engineering, K.N.Toosi University of Technology, Tehran, Iran

Publisher

Informa UK Limited

Subject

General Earth and Planetary Sciences

Reference38 articles.

1. Ahadzadeh, S., M. Valadanzouj, S. Sadeghian, and S. Ahmadi. 2008. “Detection of Damaged Buildings after an Earthquake Using Artificial Neural Network Algorithm.” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Beijing. Part B8: 369–372. http://www.isprs.org/proceedings/XXXVII/congress/8_pdf/2_WG-VIII-2/40.pdf

2. Automatic analysis of the difference image for unsupervised change detection

3. Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and $k$-Means Clustering

4. Change Detection in Satellite Images Using a Genetic Algorithm Approach

5. Unsupervised Change Detection for Satellite Images Using Dual-Tree Complex Wavelet Transform

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An attention-enhanced spatial–temporal high-resolution network for irrigated area mapping using multitemporal Sentinel-2 images;International Journal of Applied Earth Observation and Geoinformation;2024-08

2. CDasXORNet: Change detection of buildings from bi-temporal remote sensing images as an XOR problem;International Journal of Applied Earth Observation and Geoinformation;2024-06

3. R&D-Net: Integration of Registration-Net and Detection-Net for Identifying Building Changes in High Spatial-Resolution Remote Sensing Images;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

4. Enhancing Very High-Resolution Satellite Images At 15 cm: A Novel Pipeline With Synthetic Data and Single Image Superresolution;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

5. An Object-Oriented Semi-Supervised Land-Use/Land-Cover Change Detection Method Based on Siamese Autoencoder Graph Attention Network;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3