Correlation-Guided Ensemble Clustering for Hyperspectral Band Selection

Author:

Wang WenguangORCID,Wang WenhongORCID,Liu Hongfu

Abstract

Hyperspectral band selection is a commonly used technique to alleviate the curse of dimensionality. Recently, clustering-based methods have attracted much attention for their effectiveness in selecting informative and representative bands. However, the single clustering algorithm is used in most of the clustering-based methods, and the neglect of the correlation among adjacent bands in their clustering procedure is prone to resulting in the degradation of the representativeness of the selected band set. This may, consequently, adversely impact hyperspectral classification performance. To tackle such issues, in this paper, we propose a correlation-guided ensemble clustering approach for hyperspectral band selection. By exploiting ensemble clustering, more effective clustering results are expected based on multiple band partitions given by base clustering with different parameters. In addition, given that adjacent bands are most probably located in the same cluster, a novel consensus function is designed to construct the final clustering partition by performing an agglomerative clustering. Thus, the performance of our addressed task (band selection) is further improved. The experimental results on three real-world datasets demonstrate that the performance of our proposed method is superior compared with those of state-of-the-art methods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3