Joint Learning of Correlation-Constrained Fuzzy Clustering and Discriminative Non-Negative Representation for Hyperspectral Band Selection

Author:

Li Zelin1ORCID,Wang Wenhong1ORCID

Affiliation:

1. College of Computer Science, Liaocheng University, Liaocheng 252059, China

Abstract

Hyperspectral band selection plays an important role in overcoming the curse of dimensionality. Recently, clustering-based band selection methods have shown promise in the selection of informative and representative bands from hyperspectral images (HSIs). However, most existing clustering-based band selection methods involve the clustering of original HSIs, limiting their performance because of the high dimensionality of hyperspectral bands. To tackle this problem, a novel hyperspectral band selection method termed joint learning of correlation-constrained fuzzy clustering and discriminative non-negative representation for hyperspectral band selection (CFNR) is presented. In CFNR, graph regularized non-negative matrix factorization (GNMF) and constrained fuzzy C-means (FCM) are integrated into a unified model to perform clustering on the learned feature representation of bands rather than on the original high-dimensional data. Specifically, the proposed CFNR aims to learn the discriminative non-negative representation of each band for clustering by introducing GNMF into the model of the constrained FCM and making full use of the intrinsic manifold structure of HSIs. Moreover, based on the band correlation property of HSIs, a correlation constraint, which enforces the similarity of clustering results between neighboring bands, is imposed on the membership matrix of FCM in the CFNR model to obtain clustering results that meet the needs of band selection. The alternating direction multiplier method is adopted to solve the joint optimization model. Compared with existing methods, CFNR can obtain a more informative and representative band subset, thus can improve the reliability of hyperspectral image classifications. Experimental results on five real hyperspectral datasets demonstrate that CFNR can achieve superior performance compared with several state-of-the-art methods.

Funder

Discipline with Strong Characteristics of Liaocheng University—Intelligent Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3