A Peristaltic Micropump Based on the Fast Electrochemical Actuator: Design, Fabrication, and Preliminary Testing

Author:

Uvarov Ilia V.ORCID,Shlepakov Pavel S.ORCID,Melenev Artem E.,Ma KechunORCID,Svetovoy Vitaly B.,Krijnen Gijs J. M.ORCID

Abstract

Microfluidic devices providing an accurate delivery of fluids at required rates are of considerable interest, especially for the biomedical field. The progress is limited by the lack of micropumps, which are compact, have high performance, and are compatible with standard microfabrication. This paper describes a micropump based on a new driving principle. The pump contains three membrane actuators operating peristaltically. The actuators are driven by nanobubbles of hydrogen and oxygen, which are generated in the chamber by a series of short voltage pulses of alternating polarity applied to the electrodes. This process guaranties the response time of the actuators to be much shorter than that of any other electrochemical device. The main part of the pump has a size of about 3 mm, which is an order of magnitude smaller in comparison with conventional micropumps. The pump is fabricated in glass and silicon wafers using standard cleanroom processes. The channels are formed in SU-8 photoresist and the membrane is made of SiNx. The channels are sealed by two processes of bonding between SU-8 and SiNx. Functionality of the channels and membranes is demonstrated. A defect of electrodes related to the lift-off fabrication procedure did not allow a demonstration of the pumping process although a flow rate of 1.5 µL/min and dosage accuracy of 0.25 nL are expected. The working characteristics of the pump make it attractive for the use in portable drug delivery systems, but the fabrication technology must be improved.

Funder

Russian Science Foundation

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3