A Miniaturized Archimedean Screw Pump for High-Viscosity Fluid Pumping in Microfluidics

Author:

Gucluer Sinan1ORCID

Affiliation:

1. Department of Mechanical Engineering, Aydin Adnan Menderes University, Aydin 09010, Turkey

Abstract

Microfluidic devices have revolutionized the field of lab-on-a-chip by enabling precise manipulation of small fluid volumes for various biomedical applications. However, most existing microfluidic pumps struggle to handle high-viscosity fluids, limiting their applicability in certain areas that involve bioanalysis and on-chip sample processing. In this paper, the design and fabrication of a miniaturized Archimedean screw pump for pumping high-viscosity fluids within microfluidic channels are presented. The pump was 3D-printed and operated vertically, allowing for continuous and directional fluid pumping. The pump’s capabilities were demonstrated by successfully pumping polyethylene glycol (PEG) solutions that are over 100 times more viscous than water using a basic mini-DC motor. Efficient fluid manipulation at low voltages was achieved by the pump, making it suitable for point-of-care and field applications. The flow rates of water were characterized, and the effect of different screw pitch lengths on the flow rate was investigated. Additionally, the pump’s capacity for pumping high-viscosity fluids was demonstrated by testing it with PEG solutions of increasing viscosity. The microfluidic pump’s simple fabrication and easy operation position it as a promising candidate for lab-on-a-chip applications involving high-viscosity fluids.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Designing a Cost-Efficient Belt-Driven 3D-Printed Syringe Pump;Afyon Kocatepe University Journal of Sciences and Engineering;2024-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3