Affiliation:
1. Science and Technology Innovation Center of Wildland Fire Prevention and Control of Beihua University, Forestry College, Beihua University, Jilin 132013, China
2. Jilin Institute of Land and Resources Investigation and Planning, Changchun 130012, China
3. Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
Abstract
In recent years, the influence of extreme weather patterns has led to an alarming increase in the frequency and severity of sub-surface forest fires in boreal forests. The Ledum palustre-Larix gmelinii forests of the Daxing’an Mountains of China have emerged as a hotspot for sub-surface fires, and terrain slope has been recognized as a pivotal factor shaping forest fire behavior. The present study was conducted to (1) study the effect of terrain slope on the smoldering temperature and spread rate using simulated smoldering experiments and (2) establish occurrence probability prediction model of the sub-surface fires’ smoldering with different slopes based on the random forest model. The results showed that all the temperatures with different slopes were high, and the highest temperature was 947.91 °C. The spread rates in the horizontal direction were higher than those in the vertical direction, and the difference increased as the slope increased. The influence of slope on the peak temperature was greater than that of spread rate. The peak temperature was extremely positively correlated with the slope, horizontal distance and vertical depth. The spread rate was extremely positively correlated with the slope. The spread rate in the vertical direction was strongly positively correlated with the depth, but was strongly negatively correlated with the horizontal distance; the horizontal spread rate was opposite. The prediction equations for smoldering peak temperature and spread rate were established based on slope, horizontal distance, and vertical depth, and the model had a good fit (p < 0.01). Using random forest model, we established the occurrence prediction models for different slopes based on horizontal distance, vertical depth, and combustion time. The models had a good fit (AUC > 0.9) and high prediction accuracy (accuracy > 80%). The study proved the effect of slope on the characteristics of sub-surface fire smoldering, explained the variation in peak temperature and spread rate between different slopes, and established the occurrence prediction model based on the random forest model. The selected models had a good fit, and prediction accuracy met the requirement of the sub-surface fire prediction.
Funder
National Key R&D Program of China
National Natural Science Foundation of China