High-resolution wildfire simulations reveal complexity of climate change impacts on projected burn probability for Southern California

Author:

Dye Alex W.ORCID,Gao Peng,Kim John B.,Lei Ting,Riley Karin L.,Yocom Larissa

Abstract

Abstract Background Wildfire is a major contemporary socio-ecological issue facing the people and natural resources of Southern California, and the prospect that a warming climate could lead to a higher probability of fire in the future is cause for concern. However, connecting climate change to projected burn probability is complex. While most models generally show temperature increasing in the future, changes in humidity and precipitation are less certain, and these changes interact to generate projections of future climates that are sometimes, but not always, more conducive to wildfire. We ran FSim, a stochastic, high-resolution spatial (270 m) and temporal (daily) fire spread model, with projected Energy Release Component (ERC) derived from multiple global climate models (GCMs) under RCP8.5 climate change scenario to explore the impact of a range of future climate trajectories on simulated burn probability and to quantify the uncertainty arising from multiple GCMs. Results We observed considerable uncertainty in the future direction of change for burn probability. Future changes were more certain in the Southern Coast region of California, where 75% of simulations projected an increase in burn probability. In the Central Coast region, five out of eight GCM-based simulations projected increased burn probability. Less than 1% of the total burnable study area had unanimous agreement on the projected direction of change. Simulated changes in burn probability were directly correlated to annual projections of changes in ERC, but were also affected by the seasonality of ERC change, as well as interactions between humidity, precipitation, and temperature. Conclusions The observed variability offers insights into why, and under what climate conditions, burn probability may increase or decrease in the future. Our study is novel in its examination of a wide range of potential future burn probability projections for Southern California using a regional application of a high-resolution stochastic fire spread model, and the complexity that we demonstrated for Southern California suggests that simple correlations of increasing fire with increasing temperature are likely underestimating the range of plausible future fire scenarios.

Funder

Western Wildland Environmental Threat Assessment Center

Strategic Environmental Research and Development Program

Research Momentum Fund at UNCW

USDA Forest Service Missoula Fire Sciences Laboratory

Extreme Science and Engineering Discovery Environment

Publisher

Springer Science and Business Media LLC

Subject

Environmental Science (miscellaneous),Ecology, Evolution, Behavior and Systematics,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3