Effect of Silica Fume on Engineering Performance and Life Cycle Impact of Jute-Fibre-Reinforced Concrete

Author:

Kurda Rawaz123ORCID

Affiliation:

1. Department of Highway and Bridge Engineering, Technical Engineering College, Erbil Polytechnic University, Erbil 44001, Iraq

2. Department of Civil Engineering, College of Engineering, Nawroz University, Duhok 42001, Iraq

3. CERIS, Civil Engineering, Architecture and Georresources Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal

Abstract

The brittleness of plain concrete (PC) is a result of its lack of tensile strength and poor resistance to cracking, which in turn limits its potential uses. The addition of dispersed fibres into the binding material has been demonstrated to have a positive impact on the tensile properties of PC. Nevertheless, using new or engineered fibres in concrete significantly increases the overall cost and carbon footprint of concrete. Consequently, the main obstacle in creating environmentally friendly fibre-reinforced concrete is the traditional design process with energy-intensive materials. This study investigated how the engineering properties and life cycle impact of concrete were influenced by varying the volume fractions of jute fibre (JF). The impact of incorporating silica fume (SF) as a partial replacement of Portland cement was also studied. The studied parameters included mechanical behaviour, non-destructive durability indicators, and the life cycle impact of concrete using JF and SF. The efficiency of JF in mechanical performance improved with the increase in age and with the addition of SF. When using both SF and 0.3% JF, there was an improvement of around 28% in the compressive strength (CS). When 0.3% JF was added, in the presence and absence of SF, the splitting tensile strength (STS) improvement was around 20% and 40%, respectively. The addition of JF improved the residual flexural strength (FS) and flexural ductility of PC. The SF addition overcame the drawbacks of the poor resistance of JF-reinforced concrete (JFRC) against water absorption (WA) and rapid chloride ion penetration (RCIP).

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3