A Modified Reactive Powder Concrete Made with Fly Ash and River Sand: An Assessment on Engineering Properties and Microstructure

Author:

Huynh Trong-Phuoc,Ngo Si-Huy,Nguyen Van-Dung

Abstract

Containing a high quantity of both fine powders and steel fiber makes reactive powder concrete (RPC) a unique kind of ultra-high strength concrete. However, the cost of manufacture, shrinkage, and hydration heat are increased when silica fume and cement are used in significant amounts. To mitigate these negative consequences and the environmental impact, this study assessed the use of fly ash (FA) with high volume combined with natural-fine river sand (NFRS) in the manufacturing of RPC. FA was utilized to partially substitute cement at 0, 20, 40, and 60 wt% in RPC mixtures that had a set water/binder ratio of 0.2. Thermal conductivity, porosity, water absorption, and compressive strength tests were performed. Furthermore, RPC's microstructure was examined using a scanning electron microscope (SEM). This study also included a cost and global warming potential analysis of RPC production. Test results indicated that a modified RPC with a 60 MPa compressive strength value could be created by using NFRS and a large amount of FA. In comparison to the reference mixture, a higher compressive strength, reduced water absorption, and lesser porosity were observed in RPC when the FA replacement amount was less than 40%. Many FA particles did not engage in the hydration reaction when the FA replacement level was more than 40%, which had a detrimental impact on the RPC's characteristics. In general, using FA to produce RPC has certain benefits for the economy and the environment. It is recommended that 40% of FA be used in actual practice.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3