Abstract
A problem of the noise-induced generation and shifts of phantom attractors in nonlinear dynamical systems is considered. On the basis of the model describing interaction of the climate and vegetation we study the probabilistic mechanisms of noise-induced systematic shifts in global temperature both upward (“warming”) and downward (“freezing”). These shifts are associated with changes in the area of Earth covered by vegetation. The mathematical study of these noise-induced phenomena is performed within the framework of the stochastic theory of phantom attractors in slow-fast systems. We give a theoretical description of stochastic generation and shifts of phantom attractors based on the method of freezing a slow variable and averaging a fast one. The probabilistic mechanisms of oppositely directed shifts caused by additive and multiplicative noise are discussed.
Funder
Russian Science Foundation
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献