Affiliation:
1. Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300354, P. R. China
Abstract
In general, dynamic systems of higher dimensions or with more complex nonlinearities exhibit more intricate behaviors. Conversely, it is worthwhile to discuss whether a complex phenomenon persists in simpler systems. This paper investigates a single-degree-of-freedom vibration system with a velocity-dependent stiffness affected by additive noise. Although the underlying deterministic system possesses only one stable equilibrium point, under noise actions, it has the potential for a stochastic P-bifurcation to occur. This bifurcation causes the central peak of the joint probability density function to split into two symmetric peaks. At this stage, the behavior of the system resembles the development of two phantom attractors that deviate from the equilibrium point, causing the system’s random states to linger around them for extended periods. The effects of the damping ratio and noise intensity on the phantom attractors are discussed, together with the critical parameter curve associated with the onset of phantom attractors. Moreover, the generation mechanism of phantom attractors is disclosed by investigating the phase trajectories of the underlying conservative system. The distribution law of those critical parameter values is also proven by the stochastic averaging method, which is associated with the most probable amplitude. This study highlights that phantom attractors can manifest in dynamic systems even in the absence of Hopf bifurcation.
Funder
Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Ltd