A CNN-SIFT Hybrid Pedestrian Navigation Method Based on First-Person Vision

Author:

Zhao Qi,Zhang Boxue,Lyu Shuchang,Zhang Hong,Sun Daniel,Li GuoqiangORCID,Feng Wenquan

Abstract

The emergence of new wearable technologies, such as action cameras and smart glasses, has driven the use of the first-person perspective in computer applications. This field is now attracting the attention and investment of researchers aiming to develop methods to process first-person vision (FPV) video. The current approaches present particular combinations of different image features and quantitative methods to accomplish specific objectives, such as object detection, activity recognition, user–machine interaction, etc. FPV-based navigation is necessary in some special areas, where Global Position System (GPS) or other radio-wave strength methods are blocked, and is especially helpful for visually impaired people. In this paper, we propose a hybrid structure with a convolutional neural network (CNN) and local image features to achieve FPV pedestrian navigation. A novel end-to-end trainable global pooling operator, called AlphaMEX, has been designed to improve the scene classification accuracy of CNNs. A scale-invariant feature transform (SIFT)-based tracking algorithm is employed for movement estimation and trajectory tracking of the person through each frame of FPV images. Experimental results demonstrate the effectiveness of the proposed method. The top-1 error rate of the proposed AlphaMEX-ResNet outperforms the original ResNet (k = 12) by 1.7% on the ImageNet dataset. The CNN-SIFT hybrid pedestrian navigation system reaches 0.57 m average absolute error, which is an adequate accuracy for pedestrian navigation. Both positions and movements can be well estimated by the proposed pedestrian navigation algorithm with a single wearable camera.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An experimental evaluation of Siamese Neural Networks for robot localization using omnidirectional imaging in indoor environments;Artificial Intelligence Review;2024-07-08

2. CNN based Smart Cane: A tool for Visually Impaired People;2023 9th International Conference on Smart Computing and Communications (ICSCC);2023-08-17

3. TCNN Architecture for Partial Occlusion Handling in Pedestrian Classification;International Journal of Pattern Recognition and Artificial Intelligence;2023-08

4. Automated guided vehicles and autonomous mobile robots for recognition and tracking in civil engineering;Automation in Construction;2023-02

5. Spatiotemporal Pyramid Aggregation and Graph Attention for Scene Perception and Tajectory Prediction;2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT);2022-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3