TCNN Architecture for Partial Occlusion Handling in Pedestrian Classification

Author:

Thu May1ORCID,Suvonvorn Nikom1ORCID

Affiliation:

1. Department of Computer Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkla 90110, Thailand

Abstract

Pedestrian classification is of increased interest to autonomous transportation systems due to the development of deep convolutional neural networks. Despite recent progress on pedestrian classification, it is still challenging to identify individuals who are partially occluded because of the diversity of the occluded parts, variation in pose, and appearance. This causes a significant performance reduction when pedestrians are covered by other objects, and feature information is lost due to the occluded parts. To solve this problem, we propose two network architectures using tree structure convolutional neural networks (T-CNN). They use the structural representation of multi-branch deep convolutional features, with the advantages of its end-to-end learning process. The high-level tree structure CNN (HT-CNN) architecture aims to concatenate the output of the classification layer from multi-segmented patches of pedestrians to handle partially occluded problems. The low-level tree structure CNN (LT-CNN) concatenates the discriminative features from each multi-segmented patch and global features. Our T-CNN architecture with a high-level tree structure performed with 94.64% accuracy on the INRIA dataset without occlusions, and with 70.78% accuracy on the Prince of Songkla University (PSU) dataset with occlusions, outperforming a baseline CNN architecture. This indicates that our proposed architecture can be used in a real-world environment to classify the occluded part of pedestrians with the visual information of multi-segmented patches using tree-structured multi-branched CNN.

Funder

TEH-AC

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3