Potential Use of Precipitates from Acid Mine Drainage (AMD) as Arsenic Adsorbents

Author:

Torres-Rivero Karina12ORCID,Bastos-Arrieta Julio34ORCID,Florido Antonio12ORCID,Martí Vicenç12ORCID

Affiliation:

1. Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, BarcelontaTEch (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain

2. Barcelona Research Center for Multiscale Science and Engineering, Av. Eduard Maristany 16, 08019 Barcelona, Spain

3. Departament d’Enginyeria Química i Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain

4. Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona (UB), 08028 Barcelona, Spain

Abstract

The role of precipitates from acid mine drainage (AMD) in arsenic removal in water is a process to be investigated in more detail. The present study is focused on the potential use of two AMD precipitates using oxidation and Ca(OH)2 (OxPFe1) or CaCO3 (OxPFe2) as As(V) adsorbents and the comparison of their performance with two commercial adsorbents (nanohematite and Bayoxide®). The AMD’s supernatants and precipitates were characterized using several techniques and assessed with theoretical speciation and mass balance methods. Gypsum was identified by XRD and assessed as the main component of the precipitates. Amorphous iron hydroxide was assessed as the second component (22% in mass), and jurbanite or aluminum hydroxide were present in the third likely phase. The equilibrium adsorption of As(V) in water at a pH between 4 and 6 was tested with the four adsorbents, and the Langmuir model correlated well. The maximum adsorption capacity (qmax) had the highest value for OxPFe1 and the lowest value for nanohematite (that could be explained in terms of the adsorbent surface speciation). The two precipitates have limited application to the adsorption of very low concentrations of arsenic because they have a binding constant (b) lower than the commercial adsorbents and could release a small amount of the arsenic contained in the precipitate.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3