Numerical Study of Internal Flow Field in a Disc Stack Centrifuge Based on Mixture-PBM Model

Author:

Dong Hefeng1,Wan Ran1,Huang Changan1,Liu Shoulie2,Luo Shamiao2,Chen Liangbin2,Li Shaobin2,Song Xizhen2

Affiliation:

1. Systems Engineering Research Institute, China State Shipbuilding Corporation Limited, Beijing 100194, China

2. School of Energy and Power Engineering, Beijing University of Aeronautics and Astronautics, Beijing 101191, China

Abstract

Disc stack centrifuge belongs to one kind of sedimentation centrifuge, widely used in the environmental protection, pharmacy, and chemical industries, etc. The flow process inside the disc stack centrifuge seriously affects the separation efficiency. However, the flow process inside the disc stack centrifuge and its influence on the separation efficiency have not yet been detailed. We plan to study the flow process of oil and water phases inside the disc stack centrifuge and to explore the process of fragmentation and accumulation of water droplets. In this study, the Mixture-PBM (Population Balance Model) model is used to numerically simulate the two-phase flow of oil and water in the disc stack centrifuge and compare it with the tests. The research found that with the increase in rotational speed, the separation efficiency rises in both the test and numerical simulation results, and the difference between the test and simulation results is below 1%. The effect of ribs on the flow is considered, and the results show that the hysteresis of the liquid flow in the disc stack centrifuge is significantly reduced after considering the ribs, and the numerical simulation results can reach 98% of the theoretical results. Fluid entering the separation channel from the neutral pore creates a vortex, and as the dimensionless number λ increases, the degree of deviation of the fluid’s trajectory from the generatrix increases. The circumferential and radial velocities in the separation channel appear large in the center and small near the wall. The water content in the rising channel gradually decreases, and 90% of the water finishes settling in the distributor. The processing volume of the separation channel in each layer shows a small bottom layer, a large top layer, and a uniform law in the middle. The coalescence of water droplets occurs mainly in the separation channel, as found by analyzing the laws of the internal flow of the disc stack centrifuge, which provides the basis for improving the structure of the disc stack centrifuge, increasing the separation efficiency and reducing the floor space.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3