Study on the Influence of Working Characteristics of Centripetal Pump Based on VOF/Mixture Model

Author:

Liu Shoulie1,Dong Hefeng2,Li Shaobin1,Song Xizhen1

Affiliation:

1. School of Energy and Power Engineering, Beijing University of Aeronautics and Astronautics, Beijing 101191, China

2. Systems Engineering Research Institute, China State Shipbuilding Corporation Limited, Beijing 100194, China

Abstract

Aviation fuel contamination can seriously affect aircraft flight safety, and the centripetal pump is the core component of aviation fuel purification equipment. The performance of centripetal pumps is highly demanded for purification equipment. The operating parameters of centripetal pumps significantly affect the internal flow characteristics, which affects the performance of centripetal pumps. However, the flow characteristics of a centripetal pump influenced by the operating parameters have not yet been elaborated upon. In this research, a three-dimensional numerical simulation of the air-fuel two-phase flow field inside a centripetal pump was carried out using the VOF/Mixture model to investigate the effects of three relatively independent physical quantities, namely, fuel flow, outlet fuel discharge pressure, and rotational speed, on the operating characteristics of the centripetal pump. The flow law inside the flow channel of a centripetal pump was analyzed based on a rotating fluid pressure model, the free liquid surface radius of air-fuel, and the total pressure recovery coefficient. It was found that centripetal pumps have a steady working state and an unsteady working state. In a steady working state, the proportion of separated zones in the flow channel of the centripetal pump is small, the flow coefficient C of the flow channel is greater than 1, and the total pressure recovery coefficient of the centripetal pump is high. In an unsteady working state, the separation zone in the flow channel of the centripetal pump accounts for a large proportion, the flow channel flow coefficient C is less than 1, and the total pressure recovery coefficient of the centripetal pump is low. An unsteady working state can easily occur in small flow, high-speed conditions. By analyzing the working state and flow characteristics of the centripetal pump, the mechanism of the influence of the flow, outlet fuel discharge pressure, and rotational speed on the working state of the centripetal pump is revealed, which provides a basis for the stable operation of the centripetal pump.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3