Effects of Surface Roughness on Windage Loss and Flow Characteristics in Shaft-Type Gap with Critical CO2

Author:

Hu Lehao,Deng QinghuaORCID,Liu Zhouyang,Li Jun,Feng ZhenpingORCID

Abstract

To investigate the effects of surface roughness on windage loss and flow characteristics in a shaft-type gap, the skin friction coefficient (Cf) and flow versus Reynolds number (Re) at different surface roughness (Ra) and radius ratio (η) values were investigated. The results showed that Cf decreased as Re increased, and the rate of decrease was constant at low Re but reduced at high Re. The growing relative deviations between the coefficients of smooth and rough walls with Ra indicated that Cf was influenced by rough walls when Re > 102. Moreover, Cf and the variation rate increased with η and were easily influenced by Ra for larger η at low Re, since the interaction between wall roughness and fluid influences windage loss. In addition, the flow field implied the flow had transitioned to Taylor-Couette flow, Taylor vortexes occurred when Re > 102, and the number of vortexes increased with increasing Ra and were reduced with increasing η. The velocity was divided into three regions and the pressure rose from the rotational to stationary walls, but decreased with growing η as a whole. This paper improves the research exploring windage loss and will help design smaller supercritical CO2 power devices.

Funder

Joint Funds of the National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. Key issues and solution strategies for supercritical carbon dioxide coal fired power plant;Xu;Energy,2018

2. Equation of state based analytical formulation for optimization of sCO2 Brayton cycle;Sathish;J. Supercrit. Fluids.,2021

3. Molecular dynamics investigation on shear viscosity of the mixed working fluid for supercritical CO2 Brayton cycle;Xue;J. Supercrit. Fluids,2022

4. Cao, R., Li, Z., Deng, Q., and Li, J. (2020, January 21–25). Design and aerodynamic performance investigations of supercritical carbon dioxide centrifugal compressor. Proceedings of the ASME Turbo Expo, American Society of Mechanical Engineers (ASME), Virtual.

5. Model improvement for shaft-type windage loss with CO2;Hu;J. Supercrit. Fluids.,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3