Action mechanism of axial flow on windage loss in open shaft‐type gap with CO2

Author:

Hu Lehao1,Deng Qinghua1ORCID,Liu Zhouyang1,Li Jun1,Feng Zhenping1

Affiliation:

1. Shaanxi Engineering Laboratory of Turbomachinery and Power Equipment School of Energy and Power Engineering Xi'an China

Abstract

AbstractThe windage loss in rotor‐stator gap has an important effect on rotating machinery, especially with higher rotational speed and fluid density. However, the mechanism of axial flow on windage loss in open shaft‐type gap is hardly studied in most literature. To clarify it, the influences of axial Reynolds number Reu and rotational Reynolds number Reω on skin friction coefficient Cf are investigated, and flow characteristics are analyzed with different gap geometry, radius ratio η. First, the results reveal that the Cf remains constant when Reu is less than 2.8 × 104 and increases rapidly as Reu when Reu ≥ 2.8 × 104, which indicates that the effect of axial velocity u on Cf is negligible for low Reu. The positive relative deviation Δ suggests that the axial flow makes windage loss and Cf rise. Besides, a larger number of Taylor vortexes fill with gap when the effect of the centrifugal force is larger than that of the inertial force, but they gradually disappear as Reu. Subsequently, the Cf and Δ increase as η, highlighting that the effect of u on windage loss and Cf is more prominent for larger η. The fact that vorticity near walls is larger than that at the center of gap reveals that windage loss arises from the interaction between walls and fluid rather than the dissipation with fluid itself. Finally, the model of Cf in shaft‐type gap is proposed in different Reω ranges based on numerical results, and the maximum sum of squares error of 1.02 × 10−5 and minimal R2 of 0.969 satisfy the requirement of fitting accuracy and indicate that the fitting model can accurately predict Cf. The conclusions significantly help predict windage loss in open shaft‐type gap with axial flow, and further improve the design for generators of supercritical CO2 turbine‐alternator‐compressor unit.

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

Reference42 articles.

1. Comprehensive thermoeconomic, exergoeconomic, and optimization analyses of direct oxy‐combustion supercritical CO 2 intercooled and reheated cycles under design and off‐design conditions

2. Dynamic response and emergency measures under failure conditions of sCO 2 Brayton cycle

3. Evaluation of Property Methods for Modeling Direct-Supercritical CO2 Power Cycles

4. Analysis of bypass regulation characteristics for apace closed Brayton cycle system;Wang HM;J Rocket Propuls,2021

5. Gas composition analysis of helium‐xenon Brayton cycle based on operating status;Wang HM;J Rocket Propuls,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3