A Cybersecurity Knowledge Graph Completion Method Based on Ensemble Learning and Adversarial Training

Author:

Wang Peng,Liu Jingju,Hou Dongdong,Zhou ShichengORCID

Abstract

The application of cybersecurity knowledge graphs is attracting increasing attention. However, many cybersecurity knowledge graphs are incomplete due to the sparsity of cybersecurity knowledge. Existing knowledge graph completion methods do not perform well in domain knowledge, and they are not robust enough relative to noise data. To address these challenges, in this paper we develop a new knowledge graph completion method called CSEA based on ensemble learning and adversarial training. Specifically, we integrate a variety of projection and rotation operations to model the relationships between entities, and use angular information to distinguish entities. A cooperative adversarial training method is designed to enhance the generalization and robustness of the model. We combine the method of generating perturbations for the embedding layers with the self-adversarial training method. The UCB (upper confidence bound) multi-armed bandit method is used to select the perturbations of the embedding layer. This achieves a balance between perturbation diversity and maximum loss. To this end, we build a cybersecurity knowledge graph based on the CVE, CWE, and CAPEC cybersecurity databases. Our experimental results demonstrate the superiority of our proposed model for completing cybersecurity knowledge graphs.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3