Abstract
The predictability of wind energy is crucial due to the uncertain and intermittent features of wind energy. This study proposes wind speed forecasting models, which employ time series clustering approaches and deep learning methods. The deep learning (LSTM) model utilizes the preprocessed data as input and returns data features. The Dirichlet mixture model and dynamic time-warping method cluster the time-series data features and then deep learning in forecasting. Particularly, the Dirichlet mixture model and dynamic warping method cluster the time-series data features. Next, the deep learning models use the entire (global) and clustered (local) data to capture the long-term and short-term patterns, respectively. Furthermore, an ensemble model is obtained by integrating the global model and local model results to exploit the advantages of both models. Our models are tested on four different wind data obtained from locations in Turkey with different wind regimes and geographical aspects. The numerical results indicate that the proposed ensemble models achieve the best accuracy compared to the deep learning method (LSTM). The results imply that the feature clustering approach accommodates a promising framework in forecasting.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献