Modified Barnacles Mating Optimization with Deep Learning Based Weed Detection Model for Smart Agriculture

Author:

Albraikan Amani AbdulrahmanORCID,Aljebreen Mohammed,Alzahrani Jaber S.,Othman MahmoudORCID,Mohammed Gouse Pasha,Ibrahim Alsaid Mohamed

Abstract

Weed control is a significant means to enhance crop production. Weeds are accountable for 45% of the agriculture sector’s crop losses, which primarily occur because of competition with crops. Accurate and rapid weed detection in agricultural fields was a difficult task because of the presence of a wide range of weed species at various densities and growth phases. Presently, several smart agriculture tasks, such as weed detection, plant disease detection, species identification, water and soil conservation, and crop yield prediction, can be realized by using technology. In this article, we propose a Modified Barnacles Mating Optimization with Deep Learning based weed detection (MBMODL-WD) technique. The MBMODL-WD technique aims to automatically identify the weeds in the agricultural field. Primarily, the presented MBMODL-WD technique uses the Gabor filtering (GF) technique for the noise removal process. For automated weed detection, the presented MBMODL-WD technique uses the DenseNet-121 model as feature extraction with the MBMO algorithm as hyperparameter optimization. The design of the MBMO algorithm involves the integration of self-population-based initialization with the standard BMO algorithm. At last, the Elman Neural Network (ENN) method was applied for the weed classification process. To demonstrate the enhanced performance of the MBMODL-WD approach, a series of simulation analyses were performed. A comprehensive set of simulations highlighted the enhanced performance of the presented MBMODL-WD methodology over other DL models with a maximum accuracy of 98.99%.

Funder

Princess Nourah bint Abdulrahman University

Deanship of Scientific Research at Umm Al-Qura University

King Saud University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3