A comparative evaluation of convolutional neural networks, training image sizes, and deep learning optimizers for weed detection in alfalfa

Author:

Yang JieORCID,Bagavathiannan Muthukumar,Wang YundiORCID,Chen YongORCID,Yu JialinORCID

Abstract

AbstractIn this research, the deep-learning optimizers Adagrad, AdaDelta, Adaptive Moment Estimation (Adam), and Stochastic Gradient Descent (SGD) were applied to the deep convolutional neural networks AlexNet, GoogLeNet, VGGNet, and ResNet that were trained to recognize weeds among alfalfa using photographic images taken at 200×200, 400×400, 600×600, and 800×800 pixels. An increase in the image sizes reduced the classification accuracy of all neural networks. The neural networks that were trained with images of 200×200 pixels resulted in better classification accuracy than the other image sizes investigated here. The optimizers AlexNet and GoogLeNet trained with AdaDelta and SGD outperformed the Adagrad and Adam optimizers; VGGNet trained with AdaDelta outperformed Adagrad, Adam, and SGD; and ResNet trained with AdaDelta and Adagrad outperformed the Adam and SGD optimizers. When the neural networks were trained with the best-performing input image size (200×200 pixels) and the best-performing deep learning optimizer, VGGNet was the most effective neural network, with high precision and recall values (≥0.99) when validation and testing datasets were used. Alternatively, ResNet was the least effective neural network in its ability to classify images containing weeds. However, there was no difference among the different neural networks in their ability to differentiate between broadleaf and grass weeds. The neural networks discussed herein may be used for scouting weed infestations in alfalfa and further integrated into the machine vision subsystem of smart sprayers for site-specific weed control.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3