Multi-Scale and Trans-Disciplinary Research and Technology Developments of Heap Bioleaching

Author:

Jia Yan12,Ruan Renman12,Qu Jingkui12,Tan Qiaoyi12,Sun Heyun12,Niu Xiaopeng12

Affiliation:

1. National Engineering Research Center for Green Recycling of Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

2. Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Heap bioleaching is considered to be a less energy-intensive metal-extraction technique compared to other methods, making it particularly attractive for low-grade sulfide ores. It has been successfully applied to recovery of copper, gold, and uranium from ores over decades. Despite its seemingly straightforward nature, heap bioleaching can experience failures if the ore is unsuitable or the heap leach process is not thoroughly investigated and well-developed. Therefore, multidisciplinary approaches are essential for research and development in heap bioleaching, as its performance depends on numerous processes operating across a wide range of length scales. This review focused on the current state of knowledge regarding the understanding of multi-scale mechanisms in heap bioleaching and the use of multidisciplinary approaches at different scales to develop the process. The investigation covered various scales, such as atomic and molecular, mineralogy and microbes, reaction particles, heap bioleaching units and full-scale factory production. Different approaches were employed to gain a comprehensive understanding of the microbial molecular structure and metabolism, the structure and reaction of minerals, microbial–mineral interaction, particles and aggregation states, and multiphase flow transfer, as well as laboratory experiments, modeling, industrialization, and operation optimization. We emphasized the need for collaboration among researchers from different disciplines and stress the importance of considering the coupling effects of physical, chemical, and microbiological factors when running heap bioleaching plants. Such collaboration and coupling are vital for successful implementation and optimization of heap bioleaching processes. This paper aimed to provide a comprehensive overview of current research related to heap bioleaching at different scales and disciplines, and gave implications to heap bioleaching technology development.

Funder

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3