Application of Multibody Dynamics and Bonded-Particle GPU Discrete Element Method in Modelling of a Gyratory Crusher

Author:

Xiong Youwei1,Chen Wei2ORCID,Ou Tao3,Zhao Guoyan1,Wu Dongling4

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

2. School of Intelligent Manufacturing Ecosystem, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China

3. School of Mechanical and Vehicle Engineering, Hunan University, Changsha 410012, China

4. School of Energy Science and Power Engineering, Central South University, Changsha 410083, China

Abstract

The gyratory crusher is one of the most important mineral processing assets in the comminution circuit, and its production performance directly impacts the circuit throughput. Due to its higher energy utilisation rate for rock breakage than semi-autogenous (SAG/AG) milling, it is a common practice in operations to promote and optimise primary crushing before the downstream capacity can be enhanced. This study aims to develop a discrete element modelling (DEM) and multibody dynamics (MBD) cosimulation framework to optimise the performance of the gyratory crusher. An MBD model was initially established to simulate the gyratory crusher’s drivetrain system. A GPU-based DEM was also developed with a parallel bond model incorporated to simulate the particle breakage behaviour. Coupling of the MBD and GPU-based DEM resulted in a cosimulation framework based on the Function Mock-up Interface. An industrial-scale gyratory crusher was selected to test the developed numerical framework, and results indicated that the developed method was capable of modelling normal and choked working conditions. The outcome of this study enabled more realistic gyratory crusher improvement and optimisation strategies for enhanced production.

Funder

Science and Technology Innovation Program of Hunan Province

Xi’an Jiaotong-Liverpool University Research Development Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3