Original and Low-Cost ADS-B System to Fulfill Air Traffic Safety Obligations during High Power LIDAR Operation

Author:

Peyrin Frédéric1ORCID,Fréville Patrick1,Montoux Nadège2,Baray Jean-Luc12ORCID

Affiliation:

1. Université Clermont Auvergne, CNRS, Observatoire de Physique du Globle de Clermont Ferrand, UAR 833, F-63000 Clermont–Ferrand, France

2. Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, UMR 6016, F-63000 Clermont–Ferrand, France

Abstract

LIDAR is an atmospheric sounding instrument based on the use of high-power lasers. The use of these lasers involves fulfilling obligations with respect to air safety. In this article, we present a low-cost air traffic surveillance solution integrated into an automated operating system for the Rayleigh-Mie-Raman LIDAR of Clermont Ferrand and the statistical elements of its application over more than two years of operation from September 2019 to March 2022. Air traffic surveillance that includes the possibility of shutting off lasers is required by international regulations because LIDAR is equipped with a class four laser that presents potential dangers to aircraft flying overhead. The original system presented in this article is based on software-defined radio. ADS-B transponder frames are analyzed in real-time, and laser emission is stopped during LIDAR operation when an aircraft is detected within a 2 km radius around the LIDAR. The system was accredited in 2019 by the French air traffic authorities. Laser shutdowns due to the detection of aircraft near the Clermont Ferrand LIDAR caused a data loss rate of less than 2% during the period of application.

Funder

UCA

CNRS-INSU

CNES

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Avionics Analytics Ontology Preliminary Flight Test Results for Decision Support;2024 Integrated Communications, Navigation and Surveillance Conference (ICNS);2024-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3