Sequential Dual Coating with Thermosensitive Polymers for Advanced Fiber Optic Temperature Sensors

Author:

Salunkhe Tejaswi Tanaji1ORCID,Kim Il Tae1ORCID

Affiliation:

1. Department of Chemical and Biological Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea

Abstract

We systematically designed dual polymer Fabry–Perrot interferometer (DPFPI) sensors, which were used to achieve highly sensitive temperature sensors. The designed and fabricated DPFPI has a dual polymer coating layer consisting of thermosensitive poly (methyl methacrylate) (PMMA) and polycarbonate (PC) polymers. Four different DPFPI sensors were developed, in which different coating optical path lengths and the resultant optical properties were generated by the Vernier effect, changing the sequence of the applied polymers and varying the concentration of the coating solutions. The experimental results confirmed that the PC_PMMA_S1 DPFPI sensor delivered a temperature sensitivity of 1238.7 pm °C−1, which was approximately 4.4- and 1.4-fold higher than that of the PMMA and PMMA_PC_S1-coated sensor, respectively. Thus, the results reveal that the coating sequence, the compact thickness of the dual polymer layers, and the resultant optical parameters are accountable for achieving sensors with high sensitivity. In the PC_ PMMA-coated sensor, the PMMA outer layer has comparatively better optical properties than the PC, which might produce synergistic effects that create a large wavelength shift with small temperature deviations. Therefore, it is considered that the extensive results with the PC_PMMA_S1 DPFPI sensor validate the efficacy, repeatability, reliability, quick reaction, feasibility, and precision of the temperature readings.

Funder

National Research Foundation of Korea

Korea Basic Science Institute

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3