GenU-Net++: An Automatic Intracranial Brain Tumors Segmentation Algorithm on 3D Image Series with High Performance

Author:

Zhang YanORCID,Liu XiORCID,Wa ShiyunORCID,Liu YutongORCID,Kang JialiORCID,Lv ChunliORCID

Abstract

Automatic segmentation of intracranial brain tumors in three-dimensional (3D) image series is critical in screening and diagnosing related diseases. However, there are various challenges in intracranial brain tumor images: (1) Multiple brain tumor categories hold particular pathological features. (2) It is a thorny issue to locate and discern brain tumors from other non-brain regions due to their complicated structure. (3) Traditional segmentation requires a noticeable difference in the brightness of the interest target relative to the background. (4) Brain tumor magnetic resonance images (MRI) have blurred boundaries, similar gray values, and low image contrast. (5) Image information details would be dropped while suppressing noise. Existing methods and algorithms do not perform satisfactorily in overcoming these obstacles mentioned above. Most of them share an inadequate accuracy in brain tumor segmentation. Considering that the image segmentation task is a symmetric process in which downsampling and upsampling are performed sequentially, this paper proposes a segmentation algorithm based on U-Net++, aiming to address the aforementioned problems. This paper uses the BraTS 2018 dataset, which contains MR images of 245 patients. We suggest the generative mask sub-network, which can generate feature maps. This paper also uses the BiCubic interpolation method for upsampling to obtain segmentation results different from U-Net++. Subsequently, pixel-weighted fusion is adopted to fuse the two segmentation results, thereby, improving the robustness and segmentation performance of the model. At the same time, we propose an auto pruning mechanism in terms of the architectural features of U-Net++ itself. This mechanism deactivates the sub-network by zeroing the input. It also automatically prunes GenU-Net++ during the inference process, increasing the inference speed and improving the network performance by preventing overfitting. Our algorithm’s PA, MIoU, P, and R are tested on the validation dataset, reaching 0.9737, 0.9745, 0.9646, and 0.9527, respectively. The experimental results demonstrate that the proposed model outperformed the contrast models. Additionally, we encapsulate the model and develop a corresponding application based on the MacOS platform to make the model further applicable.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3