Implementation and Evaluation of Spatial Attention Mechanism in Apricot Disease Detection Using Adaptive Sampling Latent Variable Network

Author:

Han Bingyuan1,Duan Peiyan1,Zhou Chengcheng1,Su Xiaotong1,Yang Ziyan1,Zhou Shutian1,Ji Mengxue1,Xie Yucen1,Chen Jianjun1,Lv Chunli1

Affiliation:

1. China Agricultural University, Beijing 100083, China

Abstract

In this study, an advanced method for apricot tree disease detection is proposed that integrates deep learning technologies with various data augmentation strategies to significantly enhance the accuracy and efficiency of disease detection. A comprehensive framework based on the adaptive sampling latent variable network (ASLVN) and the spatial state attention mechanism was developed with the aim of enhancing the model’s capability to capture characteristics of apricot tree diseases while ensuring its applicability on edge devices through model lightweighting techniques. Experimental results demonstrated significant improvements in precision, recall, accuracy, and mean average precision (mAP). Specifically, precision was 0.92, recall was 0.89, accuracy was 0.90, and mAP was 0.91, surpassing traditional models such as YOLOv5, YOLOv8, RetinaNet, EfficientDet, and DEtection TRansformer (DETR). Furthermore, through ablation studies, the critical roles of ASLVN and the spatial state attention mechanism in enhancing detection performance were validated. These experiments not only showcased the contributions of each component for improving model performance but also highlighted the method’s capability to address the challenges of apricot tree disease detection in complex environments. Eight types of apricot tree diseases were detected, including Powdery Mildew and Brown Rot, representing a technological breakthrough. The findings provide robust technical support for disease management in actual agricultural production and offer broad application prospects.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3