Hysteretic Behavior on Asymmetrical Composite Joints with Concrete-Filled Steel Tube Columns and Unequal High Steel Beams

Author:

Ji Jing,Zeng Wen,Jiang Liangqin,Bai Wen,Ren Hongguo,Chai Qingru,Zhang Lei,Wang Hongtao,Li Yunhao,He Lingjie

Abstract

In order to acquire the hysteretic behavior of the asymmetrical composite joints with concrete-filled steel tube (CFST) columns and unequal high steel beams, 36 full-scale composite joints were designed, and the CFST hoop coefficient (ξ), axial compression ratio (n0), concrete cube compressive strength (fcuk), steel tube strength (fyk), beam, and column section size were taken as the main control parameters. Based on nonlinear constitutive models of concrete and the double broken-line stress-hardening constitutive model of steel, and by introducing the symmetric contact element and multi-point constraint (MPC), reduced-scale composite joints were simulated by ABAQUS software. By comparing with the test curves, the rationality of the modeling method was verified. The influence of various parameters on the seismic performance of the full-scale asymmetrical composite joints was investigated. The results show that with the increasing of fcuk, the peak load (Pmax) and ductility of the specimens gradually increased. With the increasing of n0, the Pmax of the specimens gradually increases firstly and then gradually decreases after reaching a peak point. The composite joints have good energy dissipation capacity and the characteristic of stiffness degradation. The oblique struts force mechanism in the full-scale asymmetrical composite joint domain is proposed. By introducing influence coefficients (ξ1 and ξ2), the expression of shear bearing capacity of composite joints is obtained by statistical regression, which can provide theoretical support for the seismic design of asymmetrical composite joints.

Funder

Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3