Abstract
The flow separation state reflects the symmetry and stability of flow around spheres. The three-dimensional structures of flow around a rigid sphere at moderate Reynolds number (Re) between 20 and 400 by using finite volume method with adaptive mesh refinement are presented, and the process of separation angles changing from stable to oscillating state with increasing of Re is analyzed. The results show that the flow is steady, and the separation angles are stable and axisymmetric at Re in less than 200. The flow is unsteady and time-periodic, and the flow separation becomes regular fluctuations and asymmetric at Re = 300, which leads to the nonzero value of lateral force and the phase difference between lift and lateral force. At Re = 400, the flow is unsteady, non-periodic, and asymmetric, as is the flow separation. It’s concluded that the flow separation angle increases when Re increases within a range between 40 and 200. With Re continues to increase, the flow separation state changes from stable to periodically regular until quasi-periodically irregular. The vortex structure changes from no shedding to asymmetric periodic shedding, and finally to asymmetric and intermittently periodic vortex shedding. These results have important implications for the stability of flow around spheres.
Funder
the Specialized Research Fund of the National Key Laboratory of Transient Physics
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献