A spectral force representation and its physical implication for vortex shedding past a stationary sphere

Author:

Lu Sheng-ShengORCID,Lin Lian-YuORCID,Lin Jen-JenORCID,Chang Chien-ChengORCID

Abstract

In this study, we consider the connection of the hydrodynamic force with vortex shedding behind a stationary sphere in an unbounded fluid at several Reynolds numbers, covering the range of critical transition from plane-symmetric to non-symmetric flow. A principal spectrum analysis (PSA) is employed/proposed to obtain the spectral representation (SR) modes for each time-varying force coefficient; this enables us to identify (i) one single characteristic frequency at Re=300, 350, and 380, i.e., the fast frequency fVS which represents the frequency of vortex shedding and (ii) two characteristic frequencies at Re=390, 400, and 420: one is the first fast frequency f1=fVS, representing the frequency of vortex shedding, and the other is the second fast frequency f2, representing the frequency of side oscillations of the vortex flow in the transverse flow direction. In the situations of the latter set of Reynolds numbers, the SR modes indicate that not only the strength but also the phase of shed vortex varies slightly at each successive vortex shedding, and most notably, we have identified rotation of the vorticity pattern in the near wake about the central axis. The PSA-SR mode analysis reveals that these three vortex activities all co-operate at the integer multiples of the greatest common-divisor of the two characteristic frequencies (f1, f2). In other words, the intricate subtlety of vortex shedding behind a stationary sphere can well be uncovered through the PSA-SR mode analysis for establishing the close connections between the force coefficients and the vorticity activities behind the sphere. The present work represents a sequel to our previous study: A spectral force representation and its physical implication for vortex shedding past a stationary or an oscillating circular cylinder at low Reynolds numbers [Lu et al., “A spectral force representation and its physical implication for vortex shedding past a stationary or an oscillating circular cylinder at low Reynolds number,” Phys. Fluids 35(5), 053606 (2023)], where we initially proposed the PSA-SR analysis to establish the connections between the force coefficients and the vortex shedding of the circular cylinder under pre-, sub-, and normal synchronization.

Funder

National Natural Science Foundation of China

Institute for Information Industry, Ministry of Science and Technology, Taiwan

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3