Improved Opposition-Based Particle Swarm Optimization Algorithm for Global Optimization

Author:

Ul Hassan Nafees,Bangyal Waqas HaiderORCID,Ali Khan M. Sadiq,Nisar Kashif,Ag. Ibrahim Ag. AsriORCID,Rawat Danda B.ORCID

Abstract

Particle Swarm Optimization (PSO) has been widely used to solve various types of optimization problems. An efficient algorithm must have symmetry of information between participating entities. Enhancing algorithm efficiency relative to the symmetric concept is a critical challenge in the field of information security. PSO also becomes trapped into local optima similarly to other nature-inspired algorithms. The literature depicts that in order to solve pre-mature convergence for PSO algorithms, researchers have adopted various parameters such as population initialization and inertia weight that can provide excellent results with respect to real world problems. This study proposed two newly improved variants of PSO termed Threefry with opposition-based PSO ranked inertia weight (ORIW-PSO-TF) and Philox with opposition-based PSO ranked inertia weight (ORIW-PSO-P) (ORIW-PSO-P). In the proposed variants, we incorporated three novel modifications: (1) pseudo-random sequence Threefry and Philox utilization for the initialization of population; (2) increased population diversity opposition-based learning is used; and (3) a novel introduction of opposition-based rank-based inertia weight to amplify the execution of standard PSO for the acceleration of the convergence speed. The proposed variants are examined on sixteen bench mark test functions and compared with conventional approaches. Similarly, statistical tests are also applied on the simulation results in order to obtain an accurate level of significance. Both proposed variants show highest performance on the stated benchmark functions over the standard approaches. In addition to this, the proposed variants ORIW-PSO-P and ORIW-PSO-P have been examined with respect to training of the artificial neural network (ANN). We have performed experiments using fifteen benchmark datasets obtained and applied from the repository of UCI. Simulation results have shown that the training of an ANN with ORIW-PSO-P and ORIW-PSO-P algorithms provides the best results than compared to traditional methodologies. All the observations from our simulations conclude that the proposed ASOA is superior to conventional optimizers. In addition, the results of our study predict how the proposed opposition-based method profoundly impacts diversity and convergence.

Funder

Universiti of Malaysia Sabah

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3