Semi-Open Multi-Distribution Center Path Planning with Time Windows

Author:

Song Qin12ORCID

Affiliation:

1. School of Engineering, Cardiff University, Cardiff CF24 3AA, UK

2. School of Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

Abstract

A well-planned robot dispatching platform reduces costs and increases efficiency for companies while also reducing carbon emissions and achieving sustainable development. At the moment, the solution to the difficulty of warehouse logistics is use of multiple distribution centers with autonomous mobile robots (AMR). To solve this problem, this paper establishes a semi-closed model of multiple distribution centers, considering the number of cycles and the number of vehicles. An improved ant colony algorithm is proposed to improve the heuristic function based on the node distance relationship to improve the quality of path search. Dynamic variable pheromone concentration and volatility factors are set to accelerate the convergence speed of the algorithm while effectively reducing the problem of the premature algorithm. The traditional ant colony algorithm and the improved ant colony algorithm are used to solve the established model. In addition, the results show that the traditional ant colony algorithm has a certain rate of dominance in the single-day cost of the closed distribution model, but the overall comprehensive cost is lower than that of the improved ant colony algorithm. The single-day cost of the semi-open multi-distribution center logistics and distribution model is lower than that of the closed multi-distribution center logistics and distribution model, and the 7 day average cost is reduced by 12%. The improved ant colony algorithm can save about 119 kWh of electricity under the same target volume requirement, which achieves the company’s goals of cost reduction and increased efficiency, as well as green and sustainable development.

Funder

Hebei Provincial Education Department’s Young Top Talent Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3