Affiliation:
1. Institute of Carbon Neutral New Energy Research, Yuzhang Normal University, Nanchang 330031, China
2. School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
Abstract
The inherent properties of TiO2, including a wide band gap and restricted spectral response range, hinder its commercial application and its ability to harness only 2–3% of solar energy. To address these challenges and unlock TiO2’s full potential in photocatalysis, C60- and CdS-co-modified nano-titanium dioxide has been adopted in this work to reduce the band gap, extend the absorption wavelength, and control photogenerated carrier recombination, thereby enhancing TiO2’s light-energy-harnessing capabilities and hydrogen evolution capacity. Using the sol-gel method, we successfully synthesized CdS-C60/TiO2 composite nanomaterials, harnessing the unique strengths of CdS and C60. The results showed a remarkable average yield of 34.025 μmol/h for TiO2 co-modified with CdS and C60, representing a substantial 17-fold increase compared to pure CdS. Simultaneously, the average hydrogen generation of C60-modified CdS surged to 5.648 μmol/h, a notable two-fold improvement over pure CdS. This work opens up a new avenue for the substantial improvement of both the photocatalytic degradation efficiency and hydrogen evolution capacity, offering promise of a brighter future in photocatalysis research.
Funder
Yuzhang Normal University’s 2021 University-Level Scientific Research Project
Science and Technology Research Project of Jiangxi Province Education Department
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献