Isolated Electron Trap‐Induced Charge Accumulation for Efficient Photocatalytic Hydrogen Production

Author:

Huang Wenhuan12,Su Chenyang1,Zhu Chen2,Bo Tingting3,Zuo Shouwei2,Zhou Wei3,Ren Yuanfu24,Zhang Yanan1,Zhang Jing5,Rueping Magnus24,Zhang Huabin24ORCID

Affiliation:

1. Key Laboratory of Chemical Additives for China National Light Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 P. R. China

2. KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia

3. Department of Applied Physics Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology Faculty of Science Tianjin University Tianjin 300072 P. R. China

4. Chemistry Program Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia

5. Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractThe solar‐driven evolution of hydrogen from water using particulate photocatalysts is considered one of the most economical and promising protocols for achieving a stable supply of renewable energy. However, the efficiency of photocatalytic water splitting is far from satisfactory due to the sluggish electron‐hole pair separation kinetics. Herein, isolated Mo atoms in a high oxidation state have been incorporated into the lattice of Cd0.5Zn0.5S (CZS@Mo) nanorods, which exhibit photocatalytic hydrogen evolution rate of 11.32 mmol g−1 h−1 (226.4 μmol h−1; catalyst dosage 20 mg). Experimental and theoretical simulation results imply that the highly oxidized Mo species lead to mobile‐charge imbalances in CZS and induce the directional photogenerated electrons transfer, resulting in effectively inhibited electron‐hole recombination and greatly enhanced photocatalytic efficiency.

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3