Deep-Learning-Enhanced CT Image Analysis for Predicting Hydraulic Conductivity of Coarse-Grained Soils

Author:

Peng Jiayi12ORCID,Shen Zhenzhong12ORCID,Zhang Wenbing3ORCID,Song Wen4

Affiliation:

1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China

2. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China

3. College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China

4. Hunan Institude of Water Resources and Hydropower Research, Changsha 410000, China

Abstract

Permeability characteristics in coarse-grained soil is pivotal for enhancing the understanding of its seepage behavior and effectively managing it, directly impacting the design, construction, and operational safety of embankment dams. Furthermore, these insights bridge diverse disciplines, including hydrogeology, civil engineering, and environmental science, broadening their application and relevance. In this novel research, we leverage a Convolutional Neural Network (CNN) model to achieve the accurate segmentation of coarse-grained soil CT images, surpassing traditional methods in precision and opening new avenues in soil granulometric analysis. The three-dimensional (3D) models reconstructed from the segmented images attest to the effectiveness of our CNN model, highlighting its potential for automation and precision in soil-particle analysis. Our study uncovers and validates new empirical formulae for the ideal particle size and the discount factor in coarse-grained soils. The robust linear correlation underlying these formulae deepens our understanding of soil granulometric characteristics and predicts their hydraulic behavior under varying gradients. This advancement holds immense value for soil-related engineering and hydraulic applications. Furthermore, our findings underscore the significant influence of granular composition, particularly the concentration of fine particles, on the tortuosity of water-flow paths and the discount factor. The practical implications extend to multiple fields, including water conservancy and geotechnical engineering. Altogether, our research represents a significant step in soil hydrodynamics research, where the CNN model’s application unveils key insights into soil granulometry and hydraulic conductivity, laying a strong foundation for future research and applications.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Center Universities

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3